- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Yeon, Kiseok (3)
-
Lee, Heejong (1)
-
Lee, Seungsu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Let and be natural numbers greater or equal to 2. Let be a homogeneous polynomial in variables of degree with integer coefficients , where denotes the inner product, and denotes the Veronese embedding with . Consider a variety in , defined by . In this paper, we examine a set of integer vectors , defined bywhere is a nonsingular form in variables of degree with for some constant depending at most on and . Suppose has a nontrivial integer solution. We confirm that the proportion of integer vectors in , whose associated equation is everywhere locally soluble, converges to a constant as . Moreover, for each place of , if there exists a nonzero such that and the variety in admits a smooth ‐point, the constant is positive.more » « less
-
Yeon, Kiseok (, The Quarterly Journal of Mathematics)Abstract We obtain bounds on fractional parts of binary forms of the shape $$\Psi(x,y)=\alpha_k x^k+\alpha_l x^ly^{k-l}+\alpha_{l-1}x^{l-1}y^{k-l+1}+\cdots+\alpha_0 y^k$$ with $$\alpha_k,\alpha_l,\ldots,\alpha_0\in{\mathbb R}$$ and $$l\leq k-2.$$ By exploiting recent progress on Vinogradov’s mean value theorem and earlier work on exponential sums over smooth numbers, we derive estimates superior to those obtained hitherto for the best exponent σ, depending on k and $l,$ such that $$ \min_{\substack{0\leq x,y\leq X\\(x,y)\neq (0,0)}}\|\Psi(x,y)\|\leq X^{-\sigma+\epsilon}. $$more » « less
-
Yeon, Kiseok (, International Mathematics Research Notices)Abstract Let $$k_i\ (i=1,2,\ldots ,t)$$ be natural numbers with $$k_1>k_2>\cdots >k_t>0$$, $$k_1\geq 2$$ and $$t<k_1.$$ Given real numbers $$\alpha _{ji}\ (1\leq j\leq t,\ 1\leq i\leq s)$$, we consider polynomials of the shape $$\begin{align*} &\varphi_i(x)=\alpha_{1i}x^{k_1}+\alpha_{2i}x^{k_2}+\cdots+\alpha_{ti}x^{k_t},\end{align*}$$and derive upper bounds for fractional parts of polynomials in the shape $$\begin{align*} &\varphi_1(x_1)+\varphi_2(x_2)+\cdots+\varphi_s(x_s),\end{align*}$$by applying novel mean value estimates related to Vinogradov’s mean value theorem. Our results improve on earlier Theorems of Baker (2017).more » « less
An official website of the United States government
